第137章一个粒子状态
作者:程威灵      更新:2019-07-26 03:59      字数:2622

精星灵,曰:“定律定义。德国物理学家海森堡1927年提出的不确定性原理是量子力学的产物。这项原则陈述了精确确定一个粒子,例如原子周围的电子的位置和动量是有限制。这个不确定性来自两个因素,首先测量某东西的行为将会不可避免地扰乱那个事物,从而改变它的状态;其次,因为量子世界不是具体的,但基于概率,精确确定一个粒子状态存在更深刻更根本的限制。”

海森伯测不准原理是通过一些实验来论证的。

设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△q就越小,所以△q∝λ。

但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△q∝1/λ。

再比如,用将光照到一个粒子上的方式来测量一个粒子的位置和速度,一部分光波被此粒子散射开来,由此指明其位置。

但人们不可能将粒子的位置确定到比光的两个波峰之间的距离更小的程度,所以为了精确测定粒子的位置,必须用短波长的光。

但普朗克的量子假设,人们不能用任意小量的光:人们至少要用一个光量子。

这量子会扰动粒子,并以一种不能预见的方式改变粒子的速度。

所以,位置要测得越准确,所需波长就要越短,单个量子的能量就越大,这样粒子的速度就被扰动得更厉害。

换言之,对粒子的位置测得越准确,对粒子的速度的测量就越不准确,反之亦然。

经过一番推理计算,海森伯得出:△q△p≥h/2π。

海森伯写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。”

月净威,哈佛大学科学家,道:“测不准原理。”

海森伯还通过对确定原子磁矩的斯特恩-盖拉赫实验的分析证明,原子穿过偏转所费的时间△t越长,能量测量中的不确定性△e就越小。

再加上德布罗意关系λ=h/p,海森伯得到△e△t≥h/4π,并且作出结论:“能量的准确测定如何,只有靠相应的对时间的测不准量才能得到。”

精星灵,曰:“简介。在量子力学里,不确定性原理(uncertaintyprinciple)表明,粒子的位置与动量不可同时被确定,位置的不确定性与动量的不确定性遵守不等式其中,是约化普朗克常数。”

维尔纳·海森堡于1927年发表论文给出这原理的原本启发式论述,因此这原理又称为“海森堡不确定性原理”。

根据海森堡的表述,测量这动作不可避免的搅扰了被测量粒子的运动状态,因此产生不确定性。

同年稍后,厄尔·肯纳德(earlkennard)给出另一种表述。

隔年,赫尔曼·外尔也独立获得这结果。

按照肯纳德的表述,位置的不确定性与动量的不确定性是粒子的秉性,无法同时压抑至低于某极限关系式,与测量的动作无关。

这样,对于不确定性原理,有两种完全不同的表述。

追根究柢,这两种表述等价,可以从其中任意一种表述推导出另一种表述。

长久以来,不确定性原理与另一种类似的物理效应(称为观察者效应)时常会被混淆在一起。

观察者效应指出,对于系统的测量不可避免地会影响到这系统。

为了解释量子不确定性,海森堡的表述所援用的是量子层级的观察者效应。

之后,物理学者渐渐发觉,肯纳德的表述所涉及的不确定性原理是所有类波系统的内秉性质,它之所以会出现于量子力学完全是因为量子物体的波粒二象性,它实际表现出量子系统的基础性质,而不是对于当今科技实验观测能力的定量评估。

在这里特别强调,测量不是只有实验观察者参与的过程,而是经典物体与量子物体之间的相互作用,不论是否有任何观察者参与这过程。

类似的不确定性关系式也存在于能量和时间、角动量和角度等物理量之间。

由于不确定性原理是量子力学的重要结果,很多一般实验都时常会涉及到关于它的一些问题。

有些实验会特别检验这原理或类似的原理。

例如,检验发生于超导系统或量子光学系统的“数字-相位不确定性原理”。

对于不确定性原理的相关研究可以用来,发展引力波干涉仪所需要的低噪声科技。

月净威,哈佛大学科学家,道:“定律影响。该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。测量一对共轭量的误差(标准差)的乘积必然大于常数h/2π(h是普朗克常数)是海森堡在1927年首先提出的,它反映了微观粒子运动的基本规律——以共轭量为自变量的概率幅函数(波函数)构成傅立叶变换对;以及量子力学的基本关系(e=h/2π*ω,p=h/2π*k),是物理学中又一条重要原理。”。

精星灵,曰:“发展简史。紧跟在汉斯·克拉默斯(hanskramers)的开拓工作之后,1925年6月,维尔纳·海森堡发表论文《运动与机械关系的量子理论重新诠释》(quantum-theoreticalre-interpretationofkinematicandmechanicalrelations),创立了矩阵力学。旧量子论渐渐式微,现代量子力学正式开启。矩阵力学大胆地假设,关于运动的经典概念不适用于量子层级。在原子里的电子并不是运动于明确的轨道,而是模糊不清,无法观察到的轨域;其对于时间的傅里叶变换只涉及从量子跃迁中观察到的离散频率。”

月净威,哈佛大学科学家,道:“旧量子论。海森堡在论文里提出,只有在实验里能够观察到的物理量才具有物理意义,才可以用理论描述其物理行为,其它都是无稽之谈。因此,他避开任何涉及粒子运动轨道的详细计算,例如,粒子随着时间而改变的确切运动位置。因为,这运动轨道是无法直接观察到的。替代地,他专注于研究电子跃迁时,所发射的光的离散频率和强度。他计算出代表位置与动量的无限矩阵。这些矩阵能够正确地预测电子跃迁所发射出光波的强度。同年6月,海森堡的上司马克斯·玻恩,在阅读了海森堡交给他发表的论文后,发觉了位置与动量无限矩阵有一个很显著的关系──它们不互相对易。这关系称为正则对易关系,以方程表示为:在那时,物理学者还没能清楚地了解这重要的结果,他们无法给予合理的诠释。”